spark,又一个传说中的分布式实现,详情:http://spark-project.org/,
安装这里就不写了,因为网上已有中文介绍,这里主要是介绍一下入门,和hadoop一样,学习的时候,首先学习spark提供的字符统计例子:javaWordCount
org.apache.spark spark-core_2.10 1.1.0
原始代码如下:
- import scala.Tuple2;
- import spark.api.java.JavaPairRDD;
- import spark.api.java.JavaRDD;
- import spark.api.java.JavaSparkContext;
- import spark.api.java.function.FlatMapFunction;
- import spark.api.java.function.Function2;
- import spark.api.java.function.PairFunction;
- import java.util.Arrays;
- import java.util.List;
- public class JavaWordCount {
- public static void main(String[] args) throws Exception {
- if (args.length < 2) {
- System.err.println("Usage: JavaWordCount <master> <file>");
- System.exit(1);
- }
- JavaSparkContext ctx = new JavaSparkContext(args[0], "JavaWordCount",
- System.getenv("SPARK_HOME"), System.getenv("SPARK_EXAMPLES_JAR"));
- JavaRDD<String> lines = ctx.textFile(args[1], 1);
- JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
- public Iterable<String> call(String s) {
- return Arrays.asList(s.split(" "));
- }
- });
- JavaPairRDD<String, Integer> ones = words.map(new PairFunction<String, String, Integer>() {
- public Tuple2<String, Integer> call(String s) {
- return new Tuple2<String, Integer>(s, 1);
- }
- });
- JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
- public Integer call(Integer i1, Integer i2) {
- return i1 + i2;
- }
- });
- List<Tuple2<String, Integer>> output = counts.collect();
- for (Tuple2 tuple : output) {
- System.out.println(tuple._1 + ": " + tuple._2);
- }
- System.exit(0);
- }
- }
运行: ./run spark/examples/JavaWordCount local input.txt
local:不解析,自己查input.txt:文件类容
- Hello World Bye World goole
运行的结果和haddoop中运行的JavaWordCount 一样
- goole: 1
- World: 2
- Hello: 1
- Bye: 1